organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2Z)-2-Bromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1-(2,4-dichlorophenyl)prop-2-en-1-one

Ray J. Butcher,^a Jerry P. Jasinski,^{b*} Anil N. Mayekar,^c B. Narayana^d and H. S. Yathirajan^c

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 5 September 2007; accepted 9 October 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.012 Å; R factor = 0.067; wR factor = 0.275; data-to-parameter ratio = 25.5.

In the title compound, C₁₇H₁₂Br₃Cl₂NO, the mean planes of the 3,5-dibromo-4-phenyl and 2,4-dichlorophenyl groups make a dihedral angle of 72.4 (2)°. The dihedral angles between the 2-bromoprop-2-en-1-one group and the two phenyl ring groups (3,5-dibromo-4-phenyl and 2,4-dichlorophenyl) are 71.1 (1) and 10.9 (4) $^{\circ}$, respectively. The crystal packing is stabilized by intermolecular N-H···O hydrogenbond interactions between the ethylamino H atom and the propyl ketone O atom, with the 3,5-dibromo-4-phenyl rings linked in chains in an alternate inverted pattern parallel and oblique to the *ac* face and diagonally along the *a* axis of the unit cell. An intramolecular hydrogen bond between the ethyl amino H atom and the 5-Br atom from the 3,5-dibromo-4phenyl group helps stabilize the molecular conformation.

Related literature

For related structures see: Butcher et al. (2006a,b); Harrison et al. (2006). For related literature see: Fichou et al. (1988); Tam et al. (1989); Goto et al. (1991); Cho et al. (1996); Uchida et al. (1998); Holla et al. (2001, 2006); Indira et al. (2002); Zhao et al. (2002); Sarojini et al. (2006); Shivarama Holla et al. (2001).

Experimental

Crystal data

G U D GING	IZ 1052 74 (12) Å3
$C_{17}H_{12}Br_3Cl_2NO$	$V = 1852./4 (12) \text{ A}^2$
$M_r = 556.91$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 9.7939 (4) Å	$\mu = 6.83 \text{ mm}^{-1}$
b = 9.7333 (4) Å	T = 296 K
c = 19.4436 (6) Å	$0.51 \times 0.43 \times 0.29 \text{ mm}$
$\beta = 91.635 \ (3)^{\circ}$	

Data collection

Oxford Diffraction Gemini R CCD	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis RED; Oxford	
Diffraction, 2007)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	H atoms treated by a mixture of
$wR(F^2) = 0.275$	independent and constrained
S = 1.04	refinement
5670 reflections	$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -1.22 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$	
$N1 - H1 \cdots O1^{i}$ $N1 - H1 \cdots Br3$	0.89 (10) 0.89 (10)	2.37 (10) 2.63 (10)	3.207 (10) 3.070 (8)	158 (9) 112 (8)	
Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.					

 $T_{\rm min}=0.550,\ T_{\rm max}=1.000$

18303 measured reflections

 $R_{\rm int} = 0.052$

5670 independent reflections 1957 reflections with $I > 2\sigma(I)$

(expected range = 0.076 - 0.138)

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

ANM thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2025).

References

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006a). Acta Cryst. E62, 01659-01661.
- Butcher, R. J., Yathirajan, H. S., Mithun, A., Narayana, B. & Sarojini, B. K. (2006b). Acta Cryst. E62, o2350-o2352.
- Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Kor. Chem. Soc. 17, 693-695.
- Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429-430.
- Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.
- Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Vijaya Raj, K. K. (2006). Acta Cryst. E62, 01578-01579.

- Holla, B. S., Rao, B. S., Sarojini, B. K., Akberali, P. M. & Kumari, N. S. (2006). *Eur. J. Med. Chem.* **41**, 657–663.
- Holla, B. S., Sarojini, B. K., Rao, B. S., Akbarali, P. M., Kumari, N. S. & Shetty, V. (2001). *Farmaco.* 56, 565-570.
- Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.
- Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, **295**, 54–59.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shivarama Holla, B., Sarojini, B. K., Sooryanarayana Rao, B., Akberali, P. M., Suchetha Kumari, N. & Shetty, V. (2001). *Farmaco*, 56, 565–570.
- Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.
- Zhao, B., Lu, W. Q., Zhou, Z. H. & Wu, Y. (2002). J. Mater. Chem. 10, 1513– 1517.

Acta Cryst. (2007). E63, o4308-o4309 [doi:10.1107/S160053680704946X]

(2Z)-2-Bromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1-(2,4-dichlorophenyl)prop-2-en-1-one

R. J. Butcher, J. P. Jasinski, A. N. Mayekar, B. Narayana and H. S. Yathirajan

Comment

The important goal of crystal growth is the improvement of microscopic and macroscopic homogeneity, which is a necessity for any application. Different types of crystals being used are semiconductor crystals, oxide crystals, alkali halide crystals and non-linear optical (NLO) crystals. The NLO effect in the organic molecules originates from a strong donor-acceptor intermolecular interaction, delocalized π -electron system, and also due to the ability to crystallize in a non-centrosymmetric space group. Among several organic compounds reported for NLO property, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO property with two planar rings connected through a conjugated double bond (Goto et al. 1991; Uchida et al. 1998; Tam et al. 1989; Indira et al. 2002, Sarojini et al. 2006). Substitution on either of the phenyl rings greatly influences non-centrosymmetric crystal packing. It is speculated that in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of an noncentrosymmetric crystal (Fichou et al. 1988). The molecular hyperpolarizability β are strongly influenced not only by the electronic effect but also by the steric effect of the substituent (Cho et al. 1996). A bromo group, therefore, can obviously improve the molecular first order hyperpolarizabilities and can effectively reduce the dipole-dipole interactions between the molecules (Zhao et al. 2002). Alpha-bromochalcones are used to synthesize triazolothiadiazines which showed promising antiproliferative activity (Holla et al. 2001, 2006). The structures of a few alpha-bromochalcones viz., 2-bromo-1-(4-methylphenyl)-3-[4-(methylsulfanyl)phenyl] prop-2-en-1-one (Butcher et al. 2006a); 2-bromo-3-hydroxy-1-(4-methylphenyl)-3-[4-(methylsulfanyl)phenyl] propan-1-one (Butcher et al. 2006b) and 2-Bromo-1-chlorophenyl-3-(4-methoxyphenyl)prop-2-en-1-one (Harrison et al. 2006) have been published. Prompted by this and in continuation of our quest to synthesize newer materials which can find use in Photonics industries, we have synthesized a new a-bromochalcone, (I), $C_{17}H_{12}Br_3Cl_2NO$ and its crystal structure is reported here.

The mean planes of the 3,5-dibromo-4-phenyl and 2,4-dichlorophenyl groups are separated by a dihedral angle of 72.4 (2)° (Fig. 1). The dihedral angles between the 2-bromo-prop-2-en-1-one group and the two phenyl ring groups (3,5-dibromo-4-phenyl and 2,4-dichlorophenyl) are 71.1 (1) and 10.9 (4)°, respectively.

Crystal packing is stabilized by intermolecular N1—H1···O1 hydrogen bond interactions between the ethyl amino hydrogen atom (H1) and the propyl ketone oxygen atom (O1) with the 3,5-dibromo-4-phenyl rings linked in chains in an alternate inverted pattern parallel and oblique to the *ac* face and diagonal along the *a* axis of the unit cell (Fig. 2). Intramolecular hydrogen bonds between the ethyl amino hydrogen atom and the 5-bromo atom from the 3,5-dibromo-4-phenyl group $[N1-H1\cdots Br3 (H1\cdots Br3 = 2.63 (0))]$ Å] provide additonal strength to the molecule within the asymmetric unit.

Experimental

2,3-Dibromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1- (2,4-dichlorophenyl)propan-1-one (6.37 g, 0.01 mol) is mixed with triethylamine (5 ml, 0.05 mol) in toluene (80 ml) (Fig. 3). This mixture was stirred well for 24 hrs. and the precipitated triethylamine hydrobromide was filtered. [Triethylene hydrobromide is produced during the dehydrobrominaton of the corresponding 2,3 dibromopropanone. The HBr produced forms a salt with triethyl amine which is added to dehydrobominate

the chalcone dibromide and the reaction produces 2-bromopropenone (Shivarama Holla *et al.*, 2001)]. The solvent was then removed under reduced pressure. The resulting solid mass obtained on cooling was collected by filtration. The compound was dried and recrystallized from a 1: 1 mixture of acetone: toluene (m.p.: 393–395 K). Analysis found: C 36.58, H 2.14, N 2.47%; C₁₇H₁₂Br₃Cl₂NO requires: C 36.66, H 2.17, N 2.52%.

Refinement

H1 was refined isotropically [N1-H1 = 0.89 (1) Å] and all other H atoms were then refined using a riding model with and C-H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.19-1.49U_{eq}(C,N)$. The maximum residual electron density peaks of 0.91 and $-1.22 \text{ e} \text{ Å}^3$, were located at 0.08 and 0.65Å from Br3 and Br2, respectively.

Figures

Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate intermolecular N—H…O hydrogen bonds.

Fig. 3. Synthesis scheme for $C_{17}H_{12}Br_3Cl_2NO$.

(2Z)-2-Bromo-3-[3,5-dibromo-4-(ethylamino)phenyl]-1- (2,4-dichlorophenyl)prop-2-en-1-one

Crystal data	
C ₁₇ H ₁₂ Br ₃ Cl ₂ NO	$F_{000} = 1072$
$M_r = 556.91$	$D_{\rm x} = 1.997 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4393 reflections
a = 9.7939 (4) Å	$\theta = 4.7 - 32.4^{\circ}$
b = 9.7333 (4) Å	$\mu = 6.83 \text{ mm}^{-1}$
c = 19.4436 (6) Å	<i>T</i> = 296 K

$\beta = 91.635 \ (3)^{\circ}$	Chunk, pale yellow
$V = 1852.74 (12) \text{ Å}^3$	$0.51 \times 0.43 \times 0.29$ r
Z = 4	

Data collection

Oxford Diffraction Gemini R CCD diffractometer	5670 independent reflections
Radiation source: fine-focus sealed tube	1957 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 32.5^{\circ}$
T = 296 K	$\theta_{\min} = 4.7^{\circ}$
φ and ω scans	$h = -13 \rightarrow 14$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -10 \rightarrow 14$
$T_{\min} = 0.550, \ T_{\max} = 1.000$	$l = -28 \rightarrow 27$
18303 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.067$	$w = 1/[\sigma^2(F_0^2) + (0.1284P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.275$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.91 \text{ e } \text{\AA}^{-3}$
5670 reflections	$\Delta \rho_{\rm min} = -1.22 \text{ e } \text{\AA}^{-3}$
222 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0063 (12)

methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

× 0.29 mm

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.08392 (12)	0.40693 (12)	-0.08410 (5)	0.0801 (4)
Br2	0.61985 (14)	-0.18958 (12)	-0.00324 (6)	0.0859 (5)
Br3	0.91770 (10)	0.21197 (11)	0.15167 (4)	0.0642 (4)
Cl1	0.8346 (3)	-0.0762 (3)	-0.44044 (14)	0.0842 (8)
Cl2	0.7686 (2)	0.3262 (3)	-0.25570 (12)	0.0642 (6)
01	1.1575 (7)	0.3537 (7)	-0.2283 (3)	0.0708 (19)
N1	0.6938 (7)	-0.0046 (9)	0.1267 (4)	0.062 (2)
H1	0.704 (10)	0.051 (10)	0.163 (5)	0.075*
C1	1.0030 (8)	0.1851 (8)	-0.2672 (4)	0.0458 (19)
C2	1.0855 (8)	0.0894 (10)	-0.2993 (4)	0.053 (2)
H2A	1.1759	0.0792	-0.2842	0.064*
C3	1.0360 (9)	0.0096 (10)	-0.3528 (5)	0.062 (2)
H3A	1.0923	-0.0533	-0.3741	0.075*
C4	0.9006 (11)	0.0247 (10)	-0.3744 (5)	0.064 (2)
C5	0.8164 (9)	0.1187 (9)	-0.3441 (4)	0.055 (2)
H5A	0.7260	0.1287	-0.3592	0.066*
C6	0.8700 (9)	0.1993 (9)	-0.2898 (4)	0.053 (2)
C7	1.0664 (8)	0.2737 (9)	-0.2120 (4)	0.054 (2)
C8	1.0235 (8)	0.2615 (9)	-0.1405 (4)	0.050 (2)
С9	0.9444 (8)	0.1596 (8)	-0.1201 (4)	0.0458 (18)
H9A	0.9182	0.1008	-0.1558	0.055*
C10	0.8895 (7)	0.1190 (8)	-0.0547 (3)	0.0434 (18)
C11	0.7920 (8)	0.0112 (7)	-0.0549 (4)	0.0407 (16)
H11A	0.7680	-0.0309	-0.0965	0.049*
C12	0.7322 (7)	-0.0329 (9)	0.0036 (4)	0.0477 (19)
C13	0.7570 (8)	0.0320 (8)	0.0678 (4)	0.0440 (18)
C14	0.8579 (8)	0.1315 (8)	0.0674 (3)	0.0429 (17)
C15	0.9201 (8)	0.1790 (8)	0.0082 (4)	0.0439 (18)
H15A	0.9823	0.2511	0.0112	0.053*
C16	0.5512 (11)	-0.0216 (13)	0.1337 (5)	0.083 (3)
H16A	0.5113	-0.0515	0.0900	0.099*
H16B	0.5111	0.0665	0.1448	0.099*
C17	0.5162 (16)	-0.1207 (15)	0.1867 (8)	0.121 (5)
H17A	0.4215	-0.1451	0.1814	0.181*
H17B	0.5326	-0.0808	0.2313	0.181*
H17C	0.5714	-0.2015	0.1822	0.181*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1079 (9)	0.0730 (8)	0.0607 (6)	-0.0378 (6)	0.0233 (5)	-0.0105 (5)
Br2	0.1158 (10)	0.0712 (8)	0.0718 (7)	-0.0343 (6)	0.0229 (6)	-0.0091 (5)
Br3	0.0769 (7)	0.0760 (7)	0.0400 (5)	-0.0135 (5)	0.0057 (4)	-0.0073 (4)
Cl1	0.094 (2)	0.0786 (18)	0.0798 (18)	-0.0087 (15)	-0.0026 (14)	-0.0277 (14)

Cl2	0.0594 (14)	0.0731 (16)	0.0606 (13)	0.0116 (11)	0.0109 (10)	-0.0024 (11)
01	0.090 (5)	0.073 (4)	0.050 (3)	-0.034 (4)	0.019 (3)	-0.006 (3)
N1	0.047 (4)	0.096 (7)	0.044 (4)	-0.017 (4)	0.009 (3)	0.010 (4)
C1	0.055 (5)	0.042 (5)	0.040 (4)	-0.001 (4)	0.000 (3)	0.020 (3)
C2	0.038 (4)	0.062 (6)	0.061 (5)	0.017 (4)	0.017 (3)	0.013 (4)
C3	0.044 (5)	0.060 (6)	0.084 (6)	0.009 (4)	0.027 (4)	0.009 (5)
C4	0.080 (7)	0.063 (6)	0.050 (5)	-0.017 (5)	0.017 (4)	0.005 (4)
C5	0.057 (5)	0.059 (5)	0.047 (5)	-0.020 (4)	-0.011 (4)	0.002 (4)
C6	0.059 (5)	0.052 (5)	0.049 (4)	0.010 (4)	0.015 (4)	0.016 (4)
C7	0.045 (5)	0.062 (6)	0.054 (5)	-0.009 (4)	0.003 (4)	0.009 (4)
C8	0.042 (4)	0.064 (6)	0.043 (4)	0.012 (4)	0.002 (3)	0.012 (4)
C9	0.053 (5)	0.045 (4)	0.041 (4)	0.001 (4)	0.011 (3)	0.013 (3)
C10	0.037 (4)	0.059 (5)	0.034 (3)	0.002 (3)	-0.001 (3)	0.019 (3)
C11	0.040 (4)	0.035 (4)	0.047 (4)	0.006 (3)	0.000 (3)	-0.006 (3)
C12	0.029 (4)	0.063 (5)	0.051 (4)	-0.018 (3)	0.006 (3)	-0.001 (4)
C13	0.049 (4)	0.045 (4)	0.038 (4)	0.006 (4)	0.006 (3)	0.003 (3)
C14	0.052 (5)	0.045 (4)	0.033 (3)	-0.005 (4)	0.018 (3)	0.005 (3)
C15	0.051 (4)	0.044 (5)	0.037 (4)	-0.005 (4)	-0.005 (3)	0.005 (3)
C16	0.073 (8)	0.105 (9)	0.071 (7)	0.012 (6)	-0.001 (5)	-0.005 (6)
C17	0.140 (13)	0.093 (10)	0.131 (11)	-0.042 (9)	0.048 (9)	0.023 (9)

Geometric parameters (Å, °)

Br1—C8	1.877 (9)	C7—C8	1.468 (11)
Br2—C12	1.882 (8)	C8—C9	1.327 (11)
Br3-C14	1.894 (7)	C9—C10	1.449 (9)
Cl1—C4	1.728 (10)	С9—Н9А	0.9300
Cl2—C6	1.729 (9)	C10—C15	1.380 (10)
O1—C7	1.232 (10)	C10-C11	1.419 (11)
N1—C13	1.366 (10)	C11—C12	1.364 (11)
N1—C16	1.418 (13)	C11—H11A	0.9300
N1—H1	0.89 (10)	C12—C13	1.414 (10)
C1—C6	1.369 (11)	C13—C14	1.383 (11)
C1—C2	1.393 (11)	C14—C15	1.396 (10)
C1—C7	1.497 (12)	C15—H15A	0.9300
C2—C3	1.375 (13)	C16—C17	1.459 (16)
C2—H2A	0.9300	C16—H16A	0.9700
C3—C4	1.388 (13)	C16—H16B	0.9700
С3—НЗА	0.9300	C17—H17A	0.9600
C4—C5	1.375 (14)	C17—H17B	0.9600
C5—C6	1.405 (12)	C17—H17C	0.9600
С5—Н5А	0.9300		
C13—N1—C16	125.6 (8)	C15—C10—C11	116.4 (6)
C13—N1—H1	118 (7)	C15—C10—C9	125.9 (7)
C16—N1—H1	95 (7)	C11—C10—C9	117.7 (7)
C6—C1—C2	118.8 (8)	C12-C11-C10	122.4 (7)
C6—C1—C7	122.9 (8)	C12-C11-H11A	118.8
C2—C1—C7	118.2 (7)	C10—C11—H11A	118.8
C3—C2—C1	121.4 (8)	C11—C12—C13	121.9 (7)

C3—C2—H2A	1193	C11_C12_Br2	1174(6)
$C_1 - C_2 - H_2 A$	119.3	$C13 - C12 - Br^2$	120.7 (6)
$C_{2}^{2} = C_{3}^{2} = C_{4}^{4}$	118.8 (8)	N1 - C13 - C14	121.9 (7)
$C_2 = C_3 = H_3 \Delta$	120.6	N1-C13-C12	121.9 (7)
$C_2 = C_3 = H_3 \Lambda$	120.6	C_{14} C_{13} C_{12}	125.0(0) 114.4(7)
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$	120.0	C14-C15-C12	1244(7)
$C_{5} = C_{4} = C_{5}$	121.4(9) 118.7(8)	$C_{13} = C_{14} = C_{13}$	124.4(7) 110.2(5)
$C_3 = C_4 = C_{11}$	110.7 (8)	C15 - C14 - Br3	115.2 (5)
C_{4}	119.9 (8)	C10 - C14 - D13	110.4(0) 120.1(7)
$C_4 = C_5 = C_0$	110.5 (6)	C10 - C15 - C14	120.1 (7)
C6 C5 H5A	120.8	C14 C15 H15A	120.0
$C_{0} = C_{0} = H_{0}$	120.8	N1 C16 C17	120.0
$C_1 = C_0 = C_3$	121.2 (8)		115.4 (10)
$C_1 = C_0 = C_{12}$	120.0(7)	NI - CIO - HIOA	108.9
$C_{5} = C_{6} = C_{12}$	118./(/)	CI/-CIO-HIOA	108.9
01 - 07 - 01	121.6 (8)	NI-CI6-HI6B	108.9
	117.9 (8)	CI/-CIO-HIOB	108.9
	120.5 (7)	H16A—C16—H16B	107.7
C9_C8_C/	122.0 (8)	C16—C17—H17A	109.5
C9—C8—Br1	124.5 (6)	C16—C17—H17B	109.5
C/-C8-BrI	113.4 (6)	HI/A—CI/—HI/B	109.5
C8—C9—C10	134.5 (8)	C16—C17—H17C	109.5
С8—С9—Н9А	112.8	H17A—C17—H17C	109.5
С10—С9—Н9А	112.8	H17B—C17—H17C	109.5
C6—C1—C2—C3	0.0 (12)	Br1-C8-C9-C10	-5.1 (14)
C7—C1—C2—C3	-176.5 (7)	C8—C9—C10—C15	-5.9 (14)
C1—C2—C3—C4	-0.7 (13)	C8—C9—C10—C11	171.8 (9)
C2—C3—C4—C5	1.0 (13)	C15-C10-C11-C12	-0.7 (11)
C2—C3—C4—Cl1	-178.8 (7)	C9—C10—C11—C12	-178.7 (7)
C3—C4—C5—C6	-0.6 (13)	C10-C11-C12-C13	4.1 (12)
Cl1—C4—C5—C6	179.2 (6)	C10-C11-C12-Br2	-173.3 (6)
C2—C1—C6—C5	0.4 (11)	C16—N1—C13—C14	134.1 (10)
C7—C1—C6—C5	176.7 (7)	C16-N1-C13-C12	-50.0 (14)
C2-C1-C6-Cl2	-175.0 (6)	C11-C12-C13-N1	176.5 (8)
C7—C1—C6—Cl2	1.4 (10)	Br2-C12-C13-N1	-6.1 (11)
C4—C5—C6—C1	-0.1 (12)	C11-C12-C13-C14	-7.3 (11)
C4—C5—C6—Cl2	175.4 (6)	Br2-C12-C13-C14	170.1 (6)
C6—C1—C7—O1	-112.8 (10)	N1-C13-C14-C15	-176.0 (8)
C2-C1-C7-O1	63.6 (11)	C12—C13—C14—C15	7.8 (12)
C6—C1—C7—C8	69.0 (11)	N1-C13-C14-Br3	3.7 (11)
C2—C1—C7—C8	-114.6 (9)	C12-C13-C14-Br3	-172.6 (6)
O1—C7—C8—C9	-167.5 (9)	C11-C10-C15-C14	1.0 (11)
C1—C7—C8—C9	10.6 (12)	C9-C10-C15-C14	178.8 (7)
O1—C7—C8—Br1	15.4 (11)	C13-C14-C15-C10	-4.9 (12)
C1—C7—C8—Br1	-166.6 (6)	Br3-C14-C15-C10	175.4 (6)
C7—C8—C9—C10	178.1 (8)	C13—N1—C16—C17	151.4 (11)
Hydrogen-bond geometry (Å. °)			
D—H…4	ח	H /	D4 DH4
	ν_{11}	11 /1	

N1—H1···O1 ⁱ	0.89 (10)	2.37 (10)	3.207 (10)	158 (9)
N1—H1···Br3	0.89 (10)	2.63 (10)	3.070 (8)	112 (8)
Symmetry codes: (i) $x-1/2$, $-y+1/2$, $z+1/2$.				

Fig. 1

Fig. 3

